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Abstract 
 
In structured database systems the schema has two 
purposes.  First it describes the structure or type of the 
data and second it describes some constraints on the 
system.  However, there is data that is not constrained by 
a schema or the schema is loose.  This type of data is 
called semistructured data.  In this paper we consider such 
data, and present novel ideas of how the degree of the 
structure of the data can be evaluated.  We also give a 
new definition of semistructured data based on the theory 
of the Adjacency Relation Systems (ARS) and present 
some motivating examples.  
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1. Introduction 
 
Semistructured data [1,2] has been a target of intensive 
investigations since the middle of the 90’s.  During that 
time the research has focused on developing of data 
models and query languages for the semistructured data. 
   
In addition to the generic data formats there are two main 
models proposed for semistructured data.  The first one, 
which is based on object model, is called Lore [3] and the 
second one, where node labels are absent and the data is 
carried entirely on the edge labels, is called UnQL [4].   
 
The basic structure of such data is a tree like or a graph 
like structure that combines data and structure into a 
simple data format.  This schema-less structure arises 
some problems that must be considered in the data models 
and query languages developed for semistructured data.   
 
In this paper we consider the same problem area, and give 
a proposal how the structure of the data can be increased 
by using the methods presented in [5,6], and by giving an 
exact definition of the semistructured data based on the 
degree of the structure of the data.   
 

The key notion in this paper is the concept of adjacency 
relation system first introduced in [5].  The authors have 
shown in [7] how relational data can be modelled by the 
adjacency model and in [8] how semistructured data can 
be presented using this new model.  The new results of 
this paper are: 
 

• An exact definition of semistructured data. 
• A definition of the degree of semistructured data. 
• An algorithm for deciding the degree of 

semistructured data. 
 
The results presented in this paper are novel, and the 
definitions, concepts and methods give a new angle of 
view for the research concerning semistructured data 
models and query languages.   
 
The rest of the paper will be organized as follows.  In 
Section 2 we define the basic concepts necessary for 
understanding the rest of the paper.  Section 3 contains the 
exact definition of semistructured data and the concept of 
the degree of the structure of the semistructured data.  We 
give also some clarifying examples concerning the degree 
of semistructured data.  In Section 4 we present an 
algorithm for determining the degree of semistructured 
data and formulate a common search problem.  In Section 
5 we give some examples of how the results can be used 
to further minimize the “schema” presented with the help 
of a DataGuide [9].  Finally, Section 6 contains some 
conclusions. 
 
 
2. Preliminaries 
 
In this section we present the basic concepts needed in the 
paper.  We start with semistructured data and continue 
with the Adjacency Relation System (ARS). 
 
 
2.1 Semistructured Data 
 
The basic structure for presenting of semistructured data 
is a graph.  There are two main variations of the graph 
model with only minor difference.  The first one is called 
Object Exchange Model (OEM), and it is developed in 
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TSIMMIS project [10].  OEM is flexible enough to 
encompass all types of information, yet it is simple 
enough to facilitate integration.  It also includes semantic 
information of objects [11]. 
 
In this model the semistructured database is presented as a 
rooted, directed labeled graph, where the nodes are the 
objects, the edges are labeled with attributes, and in which 
some leaf nodes have an associated atomic value.  The 
graph has a root, i.e. a distinguished object from which all 
the other objects are accessible.   In Figure 1 we can see 
an OEM model of a movie database. 
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Figure 1.  An OEM database [12] 
 
The base types of the graph are numbers (19.95, 20 etc.), 
strings (“Harrison Ford”, “Han”, etc.) and labels (Name, 
Character, Title, etc.).  There are also other types, which 
define textual encodings, e.g. date, time, gif etc. (not 
present in Figure 1) [13]. 
 
The other variant of the model is called UnQL.   
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Figure 2.  An example movie Database [14] 

 
In this model labels carry all the basic information (Figure 
2).  Types in this model are the same base types as in 
OEM (i.e. String, Integer, Real etc.) and also a new type 
called Symbol.  This type corresponds to attribute names 
in relations.  Formally, a rooted, labeled graph is 

},,,,,,{ ρλrtsEVG = , where ),,,( tsEV  is a multi-graph 
( VEs →:  and EVt →:  denote the source and target of 
each edge), Vr ∈  is the root, and }{: ελ ∪→ LabelE  is 

the labeling function.  With ρ  we can tie the leaf nodes 
back into the tree, and ε denotes “empty” symbol [14]. 
 
The recent research of semistructured data has focused on 
XML.  The reason is the similarities between the 
structures of XML data and semistructured data [13].   
 
 
2.2.  Adjacency Relation System 
 
In this section we will define our model, called Adjacency 
Model (AM), for representing semistructured data.  Here 
we give only the basic definitions.  In order to get an 
exact insight of what an adjacency model is, we refer to 
the definitions introduced in [5] and [6].   
 
An adjacency relation system (ARS) is a pair ( RA, ), 
where },,,{ 21 nAAAA L= , n ≥ 1, is a set containing 
pairwise disjoint finite nonempty sets and 

}},,2,1{,|{ njiRR ij L∈=  is a set of relations, where 
each ijR  is a relation on ji AA × . 
 
If ijm Ryxyxyx ∈),(,),,(),,( 21 K  are all the pairs of 
relation ijR  having x  as the first component, then each 
element ),,2,1( mkyk K=  is said to be adjacent to the 
element x .  Furthermore, denote by )(xAd j  the set 

},,,{ 21 myyy K .   
 
An adjacency relation system ( RA, ) is said to be 
symmetric if for each pair iAx ∈ , jAy ∈ , it holds that 

)(yAdx i∈  if and only if )(xAdy j∈ .  In many 
applications the adjacencies are symmetric. 
 
We assume that the elements of each set iA , ni ,,2,1 L= , 
represent entities of a certain type iT .  The adjacency 
between elements can also be defined with the help of the 
so-called adjacency defining sets of types in the following 
way.  Associate with each index pair },,2,1{, nji L∈  a 
set },{},,2,1{ jinK −⊆ L  of indices and a set of entity 
types 

}|{
~

KkTT kij ∈= . 
 

The set 
~

ijT  thus gives us the entity types which determine 
the adjacency between the elements of iA  and jA .   
 
Elements iAx ∈ , jAy ∈ , where },,2,1{, nji K∈  and 

yx ≠ , are said to be adjacent with respect to a set of 
entity types  
 

φ≠∈= }|{
~

KkTT kij  
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if for each Kk ∈  there is an element kAz ∈  such that 

)(zAdx i∈  and )(zAdy j∈ .  The set ijT
~

 is called the 
adjacency defining set between the elements of iA  and 

jA . 
 
An ARST ),,( τRA  is said to be unique if for each pair 

},,2,1{, nji K∈  of integers such that the corresponding 

adjacency defining set ijT
~

 is nonempty and for all 
elements iAx ∈ , jAy ∈ , x  and y  are adjacent if and 

only if they are adjacent with respect to ijT
~

. 
 
Consider (Figure 3) a set of relations 

},,,,,,,,{ 332313232221131211 RRRRRRRRRR = , where 
 

)},(),,{( 122111 xxxxR = , 
)},(),,(),,(),,{( 2222122112 xyyxxyyxR = , 

)},(),,(),,(),,{( 2222211213 xzzxxzzxR = , 
)},(),,{( 122133 zzzzR = , 

φ===== 3231232221 RRRRR . 
 
and the adjacency defining sets 
 

}{ 211
~

TT = , 

}{ 133
~

TT = , 
φ======= 32233113211222 TTTTTTT . 

 
)( 11 TA

)( 22 TA )( 33 TA

1x 2x

1y 2y 3y 1z 2z
 

Figure 3:  An adjacency defining set. 
 
We can see that elements 1x  and 2x , 121 , Axx ∈ , are 
adjacent with each other as well as 1z  and 2z , 

321 , Azz ∈ .  The adjacency is defined via the relation 

11R  for 1x  and 2x , and via the relation 33R  for 1z  and 

2z , and on the other hand, also with respect to the 

adjacency defining sets 
~

11T  and 
~

33T .  If there are no 
other non-empty adjacency defining sets, the ARST 
considered is unique.  

 
3. Definition of Semistructured data 
 
In this chapter we give an accurate definition for 
semistructured data. 
 
We can use the notation ji TT →  for a relation type to 
indicate that the relations ijR  are defined on ji AA × .  
Furthermore, we can consider sets of relation types 
 

}),(|{ SjiTT ji ∈→ , 
 
where },,2,1{},,2,1{ nnS KK ×⊆ . For an ARST 

),,( τRA , denote by SR |  the restriction of R  on S , i.e. 
  

}),(|{| SjiRRSR ij ∈∈= . 
 
Relation combinations have very remarkable importance 
for the optimization of the queries on semistructured data 
because they can be used to restrict the search space, and 
hereby limit the search time used by the query.  Here the 
concept of valid relation combinations plays a key role. 
 
A relation sr TT →  is determined uniquely by the relation 
combination }),(|{ SjiTT ji ∈→ , if for any unique 

ARST ),,( τRA  there is no other unique ARST ( τ,, 'RA ) 

such that SRSR || '=  but '
rsrs RR ≠ .  Each relation 

determined uniquely by a given relation combination is 
said to be derivable from the given relation combination.  
If a relation combination determines uniquely all other 
relations then it is said to be valid. 
 
Example 1. Consider the ARST ),,( τRA , where 
 

)},(),,{( 122111 xxxxR = , 
φ=22R , 

)},(),,{( 122133 zzzzR = , 
)},(),,(),,(),,{( 3222211112 yxyxyxyxR = , 
)},(),,(),,(),,{( 2322121121 xyxyxyxyR = , 

)},(),,{( 221213 zxzxR = , 
)},(),,{( 222131 xzxzR = , 

)},(),,(),,{( 13122123 zyzyzyR = , 
)},(),,(),,{( 12312132 yzyzyzR = , 

}{},{ 133
~

211
~

TTTT == , 

φ======= 32
~

23
~

31
~

13
~

21
~

12
~

22
~

TTTTTTT . 
 
Let )}3,2(),2,1{(=S .  Then  
 

},{}),(|{| 2312 RRSjiRRSR ij =∈∈= . 
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Let ( τ,, 'RA ) be another ARST, where 'R  contains the 
same relations as R  except the relation on 22 AA ×  which 
is defined by  
 

)},(),,{( 1221
'
22 yyyyR = . 

 
As in Example 1 it can be deduced that the ARST 
( τ,, 'RA ) is unique.  Since SRSR || '= , the relation 
combination },{ 3221 TTTT →→  is not valid. 
 
Now, e.g. the relation 31 TT →  is not uniquely 

determined.  Namely, if ( τ,, 'RA ) is another ARST, 
where 'R  contains the same relations as R  except the 
relations on 31 AA ×  and on 13 AA × , which are defined 
by 
 

)},(),,{( 2111
'
13 zxzxR =  and )},(),,{( 1211

'
31 xzxzR = . 

 
Now we define the notion of the degree of the data 
structure. 
 
Let C  be a subset of all possible relations of the form 

'TT → , where T and 'T  are types.  Denote by C  the 

number of relations in C .  Let 'C  be a relation 
combination such that 'CC ∪  is valid and 

}|min{' valid is ii CCCC ∪= .  Denote ')min( CC = .  

In other words, )min(C  is the minimum number of 
relations, which is needed to complete C  to a valid 
relation combination. 
 
Denote by )(CD  the set of all relations, which can be 
derived uniquely from C .  Obviously, )(CDC ⊆ . 
 
The degree of a relation combination C  is defined as the 
ratio 
 

relations all of number the
)(

)(
CD

CDeg = . 

 
According to the definition 1)(0 ≤≤ CDeg  for each 
relation combination C . 
 
Let C  be the relation combination describing the given 
data structure.  The data structure is said to be 
 

( i )    structured, if 1)( =CDeg ; 
( ii )   unstructured, if 0)( =CDeg ; 
( iii )  semistructured, if 1)(0 << CDeg . 

 
Note.  Obviously, 1)( =CDeg  if and only if C  is valid. 

Example 2.  Consider a special case of an ARST 
associated with planar graphs.  We have the entities V  
(vertices), E  (edges) and F   (faces).  Denote e.g. 

VT =1 , ET =2  and FT =3 .  By the usual interpretation, 
two vertices are adjacent if they are adjacent with respect 

to E .  Thus we may denote }{
~

11
~

ETT VV == .  Similarly, 

we may define }{
~

22
~

VTT EE ==  and }{
~

33
~

ETT FF == .  

Moreover, φ== VETT
~

12
~

, }{
~

13
~

ETT VF ==  and 

φ== EFTT
~

23
~

. 
 
In this case we have altogether nine different types of 
relations (Figure 4). 
 

V

E

F

 
Figure 4.   Three entities and nine relations 
 
Example 3.  It can be shown [5] that, if we know the 
relations VF →  and EV → , i.e. },{ EVVFC →→= , 
then we can always derive the relations FV → , VE →  
and VV → .  This means that  
 

},,,,{)( VVVEFVEVVFCD →→→→→= .  
 
So the degree of C  is 
 

56.09/5)( ==CDeg . 
 
If e.g. },{ FEEVC →→= , it can be shown that 

)(CD contains all the nine relations and so  
 

19/9)( ==CDeg  
 
and the relation combination C  is valid. 
 
If on the other hand },,{ EEVFEVC →→→= , it can 
be shown that  
 

}.,,,,,{)( VVFVVEEEVFEVCD →→→→→→=
 
So the degree of C  in this case is 
 

67.09/6)( ==CDeg . 
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4. Determining of the Degree 
 
We first give an algorithm for determining the degree of a 
given data structure C , given as a set of relations.  We 
end the section by proposing the definition for a general 
query. 
 
Let entity types nTT ,,1 K , a set 

},,2,1{},,2,1{ nnS KK ×⊆  and adjacency defining sets 
τ  be given.  Consider the relation combination 

}),(|{ SjiTTC ji ∈→= .  By the symmetry, we may 
assume that for each pair Sji ∈),(  also Sij ∈),( . 
 
Degree Testing Algorithm.  
 
Step 1.  Search for each pair Sji ∉),( , such that there 
exists an integer jik ,≠  for which Ski ∈),(  and 

Skj ∈),( .  If such pair and integer are found, goto Step 
2.  Otherwise goto Step 3. 
 
Step 2.  Find all integers rkk K,1 , 1≥r such that 

Skjki ss ∈),(),,(  for rs ≤≤1 .  If for at least one s , 

rs ≤≤1 , we have ijk TT
s

~
∈  and },,,{

21

~

rkkkij TTTT K⊆ , 

then include the relations ji TT →  and ij TT →  in the 
relation combination, i.e. add the pairs ),( ji  and ),( ij  to 
the set S  and goto Step 2.  If there is no such integer s , 
then goto Step 3. 
 
Step 3. Let 1C  be the set of all new relations derived by 
Step 2.  The degree of the given data structure C  is 
 

2n
1)(

CC
CDeg

+
=  

 
and the set of all obtained relations is 'CC ∪ . 
 
The proof of the correctness of the algorithm is omitted 
here.   
 
The Degree Testing Algorithm enables the definition of a 
general query based on the given data structure, i.e. on the 
given relation combination C . 
 
General query:  Given ARST ),,( τRA , a relation 
combination C  and an element x of type X , find the set 

xY  of all elements of type Y  such that  
 

(i)   the relation )(CDYX ∈→  and 
(ii)  YXRyx ∈),( for all xYy ∈ . 

 

Note that in (i) the set )(CD  of relations can be 
determined by the preceding algorithm.  
 
It can be shown that this general definition of a query 
includes e.g. all the special queries introduced in [15], 
namely the queries such as direct query, inverse query, 
self queries, direct transitive query, inverse transitive 
query, and indirect transitive queries. 
 
 
5. Examples 
 
In Lore [3] the structure of the database is presented by a 
Data Guide, which is a structural summary of a 
semistructured database.  It contains all the paths of a data 
graph, and there can be more than one data guide of which 
one is minimal.  A minimal data guide means that it is the 
smallest data guide in terms of total number of nodes [16]. 
 
A data guide is concise and accurate, i.e. it contains all the 
paths of the data graph, and every path in the data guide 
occurs only once.  However, it is not always obvious that 
we need all those relations or paths that are represented in 
a data guide.  If we consider a data guide in the light of 
the theory of the Adjacency Relation Systems, we can 
reduce the number of edges between some of the nodes 
(or types as they are called in the ARS).  It is fully 
possible, because the adjacency between the nodes can be 
represented with the help of the so-called adjacency 
defining types.   
 
For example in Figure 5, the data guide can be reduced by 
eliminating the edges between the types Boss and 
Regular, because the adjacency is defined with respect to 
the type Employee.   
 

Root

Employees

Regular

Boss
Company

company

employee

name phone position
manages

managedby

manages

worksfor

worksfor

worksfor

positionname

name

managedby

phone name

&p1,&p2,&p3,&p4
&p5,&p6,&p7,&p8

&p2,&p3,&p5
&p7,&p8

&p1,&p4,&p6
&c

&r

 
Figure 5.  A data guide of an OEM database [13]. 
 
Additionally, we can eliminate the edges between the 
types Employee and Company, and between the types 
Company and Regular.  In the first case the reason is that 
the adjacency is defined with respect to the type Root and 
in the second case the adjacency is defined transitively 
with respect to the path Regular-Employee-Boss-
Company. 
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We now consider a schema graph (Figure 6) of a 
database, which actually is also a data guide.  This 
schema graph can be further reduced by eliminating an 
edge called worksfor, because of the same reason as 
before, i.e. the adjacency between the type Emp and 
Comp can be defined with respect to the type Root. 
 
As we can see from these two examples the data guides of 
Figures 5 and 6 are not minimal from the point of view of 
the theory of the adjacency relation systems.  This fact 
gives new emphasis for the definition of semistructured 
data and its degree presented in Section 3. 
 

Root

employee

worksfor

company

manages

managedby
name

name
phone position

Emp
Comp

 
Figure 6.  A schema graph of an OEM database [13]. 
 
6. Conclusions 
 
In this paper a new definition of semistructured data 
based on the theory of the Adjacency Relation Systems is 
introduced.  Especially, in this model the degree of 
semistructured data is defined accurately.  It is also shown 
that the degree is a decidable property.  Based on this 
result the paper contains also a formulation for a general 
query.  The next step will be the developing of different 
kinds of query algorithms based on the model as well as 
applying them to frequently occurring applications. 
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