
www.manaraa.com

COMPLETION OF THE INCOMPLETE DATA STRUCTURE

 Matti Linna Merja Wanne Jari Töyli
 University of Vaasa University of Vaasa University of Vaasa
 P.O.Box 700 P.O.Box 700 P.O.Box 700
 Vaasa Vaasa Vaasa
 Finland Finland Finland

Abstract

In structured database systems the schema has two
purposes. First it describes the structure or type of the
data and second it describes some constraints on the
system. However, there is data that is not constrained by
a schema or the schema is loose. This type of data is
called semistructured data. In this paper we consider such
data, and present novel ideas of how the degree of the
structure of the data can be evaluated. We also give a
new definition of semistructured data based on the theory
of the Adjacency Relation Systems (ARS) and present
some motivating examples.

Key Words
Knowledge Representation, Semistructured Data, Data
Structure, Degree of Semistructured Data

1. Introduction

Semistructured data [1,2] has been a target of intensive
investigations since the middle of the 90’s. During that
time the research has focused on developing of data
models and query languages for the semistructured data.

In addition to the generic data formats there are two main
models proposed for semistructured data. The first one,
which is based on object model, is called Lore [3] and the
second one, where node labels are absent and the data is
carried entirely on the edge labels, is called UnQL [4].

The basic structure of such data is a tree like or a graph
like structure that combines data and structure into a
simple data format. This schema-less structure arises
some problems that must be considered in the data models
and query languages developed for semistructured data.

In this paper we consider the same problem area, and give
a proposal how the structure of the data can be increased
by using the methods presented in [5,6], and by giving an
exact definition of the semistructured data based on the
degree of the structure of the data.

The key notion in this paper is the concept of adjacency
relation system first introduced in [5]. The authors have
shown in [7] how relational data can be modelled by the
adjacency model and in [8] how semistructured data can
be presented using this new model. The new results of
this paper are:

• An exact definition of semistructured data.
• A definition of the degree of semistructured data.
• An algorithm for deciding the degree of

semistructured data.

The results presented in this paper are novel, and the
definitions, concepts and methods give a new angle of
view for the research concerning semistructured data
models and query languages.

The rest of the paper will be organized as follows. In
Section 2 we define the basic concepts necessary for
understanding the rest of the paper. Section 3 contains the
exact definition of semistructured data and the concept of
the degree of the structure of the semistructured data. We
give also some clarifying examples concerning the degree
of semistructured data. In Section 4 we present an
algorithm for determining the degree of semistructured
data and formulate a common search problem. In Section
5 we give some examples of how the results can be used
to further minimize the “schema” presented with the help
of a DataGuide [9]. Finally, Section 6 contains some
conclusions.

2. Preliminaries

In this section we present the basic concepts needed in the
paper. We start with semistructured data and continue
with the Adjacency Relation System (ARS).

2.1 Semistructured Data

The basic structure for presenting of semistructured data
is a graph. There are two main variations of the graph
model with only minor difference. The first one is called
Object Exchange Model (OEM), and it is developed in

www.manaraa.com

TSIMMIS project [10]. OEM is flexible enough to
encompass all types of information, yet it is simple
enough to facilitate integration. It also includes semantic
information of objects [11].

In this model the semistructured database is presented as a
rooted, directed labeled graph, where the nodes are the
objects, the edges are labeled with attributes, and in which
some leaf nodes have an associated atomic value. The
graph has a root, i.e. a distinguished object from which all
the other objects are accessible. In Figure 1 we can see
an OEM model of a movie database.

MovieMovieMovie

TitleTitle
Title

ActorActor
Actor Year

Year PricePrice
Price Writer

NameName NameCharacter CharacterAmount Currency Original AKA Character

DB

&1

&2 &3 &4

&5 &7 &8 &9 &10&6
&11 &12 &13 &14 &15 &16

&17 &18 &19 &20 &21 &22 &23 &24 &25 &26

“Blade
runnner”

“Harrison
Ford” “Deccard” 20 “US $”

1982
“1984”

“George
Orwell” 19.95 1956

MovieMovieMovie

TitleTitle
Title

ActorActor
Actor Year

Year PricePrice
Price Writer

NameName NameCharacter CharacterAmount Currency Original AKA Character

DB

&1

&2 &3 &4

&5 &7 &8 &9 &10&6
&11 &12 &13 &14 &15 &16

&17 &18 &19 &20 &21 &22 &23 &24 &25 &26

“Harrison
Ford” “Han”

“Star
wars”

“Adventure of
the Starkiller”

“Mark
Hamill” “Luke”

Figure 1. An OEM database [12]

The base types of the graph are numbers (19.95, 20 etc.),
strings (“Harrison Ford”, “Han”, etc.) and labels (Name,
Character, Title, etc.). There are also other types, which
define textual encodings, e.g. date, time, gif etc. (not
present in Figure 1) [13].

The other variant of the model is called UnQL.

Entry Entry Entry. . . .

Movie Movie TV Show

Title
Cast

Director
Title Cast

Director Title
Cast

Episod

1 2 3 … 1.2E6“Casablanca”

“Bocart” “Bacall”

Play it again
 Sam

Credit
Actors

“Allen”

Actors

. . .

“Allen”

Director
Special
Guests

. . .

Figure 2. An example movie Database [14]

In this model labels carry all the basic information (Figure
2). Types in this model are the same base types as in
OEM (i.e. String, Integer, Real etc.) and also a new type
called Symbol. This type corresponds to attribute names
in relations. Formally, a rooted, labeled graph is

},,,,,,{ ρλrtsEVG = , where),,,(tsEV is a multi-graph
(VEs →: and EVt →: denote the source and target of
each edge), Vr ∈ is the root, and }{: ελ ∪→ LabelE is

the labeling function. With ρ we can tie the leaf nodes
back into the tree, and ε denotes “empty” symbol [14].

The recent research of semistructured data has focused on
XML. The reason is the similarities between the
structures of XML data and semistructured data [13].

2.2. Adjacency Relation System

In this section we will define our model, called Adjacency
Model (AM), for representing semistructured data. Here
we give only the basic definitions. In order to get an
exact insight of what an adjacency model is, we refer to
the definitions introduced in [5] and [6].

An adjacency relation system (ARS) is a pair (RA,),
where },,,{ 21 nAAAA L= , n ≥ 1, is a set containing
pairwise disjoint finite nonempty sets and

}},,2,1{,|{ njiRR ij L∈= is a set of relations, where
each ijR is a relation on ji AA × .

If ijm Ryxyxyx ∈),(,),,(),,(21 K are all the pairs of
relation ijR having x as the first component, then each
element),,2,1(mkyk K= is said to be adjacent to the
element x . Furthermore, denote by)(xAd j the set

},,,{ 21 myyy K .

An adjacency relation system (RA,) is said to be
symmetric if for each pair iAx ∈ , jAy ∈ , it holds that

)(yAdx i∈ if and only if)(xAdy j∈ . In many
applications the adjacencies are symmetric.

We assume that the elements of each set iA , ni ,,2,1 L= ,
represent entities of a certain type iT . The adjacency
between elements can also be defined with the help of the
so-called adjacency defining sets of types in the following
way. Associate with each index pair },,2,1{, nji L∈ a
set },{},,2,1{ jinK −⊆ L of indices and a set of entity
types

}|{
~

KkTT kij ∈= .

The set
~

ijT thus gives us the entity types which determine
the adjacency between the elements of iA and jA .

Elements iAx ∈ , jAy ∈ , where },,2,1{, nji K∈ and

yx ≠ , are said to be adjacent with respect to a set of
entity types

φ≠∈= }|{
~

KkTT kij

www.manaraa.com

if for each Kk ∈ there is an element kAz ∈ such that

)(zAdx i∈ and)(zAdy j∈ . The set ijT
~

 is called the
adjacency defining set between the elements of iA and

jA .

An ARST),,(τRA is said to be unique if for each pair

},,2,1{, nji K∈ of integers such that the corresponding

adjacency defining set ijT
~

 is nonempty and for all
elements iAx ∈ , jAy ∈ , x and y are adjacent if and

only if they are adjacent with respect to ijT
~

.

Consider (Figure 3) a set of relations

},,,,,,,,{ 332313232221131211 RRRRRRRRRR = , where

)},(),,{(122111 xxxxR = ,
)},(),,(),,(),,{(2222122112 xyyxxyyxR = ,

)},(),,(),,(),,{(2222211213 xzzxxzzxR = ,
)},(),,{(122133 zzzzR = ,

φ===== 3231232221 RRRRR .

and the adjacency defining sets

}{ 211
~

TT = ,

}{ 133
~

TT = ,
φ======= 32233113211222 TTTTTTT .

)(11 TA

)(22 TA)(33 TA

1x 2x

1y 2y 3y 1z 2z

Figure 3: An adjacency defining set.

We can see that elements 1x and 2x , 121 , Axx ∈ , are
adjacent with each other as well as 1z and 2z ,

321 , Azz ∈ . The adjacency is defined via the relation

11R for 1x and 2x , and via the relation 33R for 1z and

2z , and on the other hand, also with respect to the

adjacency defining sets
~

11T and
~

33T . If there are no
other non-empty adjacency defining sets, the ARST
considered is unique.

3. Definition of Semistructured data

In this chapter we give an accurate definition for
semistructured data.

We can use the notation ji TT → for a relation type to
indicate that the relations ijR are defined on ji AA × .
Furthermore, we can consider sets of relation types

}),(|{ SjiTT ji ∈→ ,

where },,2,1{},,2,1{ nnS KK ×⊆ . For an ARST

),,(τRA , denote by SR | the restriction of R on S , i.e.

}),(|{| SjiRRSR ij ∈∈= .

Relation combinations have very remarkable importance
for the optimization of the queries on semistructured data
because they can be used to restrict the search space, and
hereby limit the search time used by the query. Here the
concept of valid relation combinations plays a key role.

A relation sr TT → is determined uniquely by the relation
combination }),(|{ SjiTT ji ∈→ , if for any unique

ARST),,(τRA there is no other unique ARST (τ,, 'RA)

such that SRSR || '= but '
rsrs RR ≠ . Each relation

determined uniquely by a given relation combination is
said to be derivable from the given relation combination.
If a relation combination determines uniquely all other
relations then it is said to be valid.

Example 1. Consider the ARST),,(τRA , where

)},(),,{(122111 xxxxR = ,
φ=22R ,

)},(),,{(122133 zzzzR = ,
)},(),,(),,(),,{(3222211112 yxyxyxyxR = ,
)},(),,(),,(),,{(2322121121 xyxyxyxyR = ,

)},(),,{(221213 zxzxR = ,
)},(),,{(222131 xzxzR = ,

)},(),,(),,{(13122123 zyzyzyR = ,
)},(),,(),,{(12312132 yzyzyzR = ,

}{},{ 133
~

211
~

TTTT == ,

φ======= 32
~

23
~

31
~

13
~

21
~

12
~

22
~

TTTTTTT .

Let)}3,2(),2,1{(=S . Then

},{}),(|{| 2312 RRSjiRRSR ij =∈∈= .

www.manaraa.com

Let (τ,, 'RA) be another ARST, where 'R contains the
same relations as R except the relation on 22 AA × which
is defined by

)},(),,{(1221
'
22 yyyyR = .

As in Example 1 it can be deduced that the ARST
(τ,, 'RA) is unique. Since SRSR || '= , the relation
combination },{ 3221 TTTT →→ is not valid.

Now, e.g. the relation 31 TT → is not uniquely

determined. Namely, if (τ,, 'RA) is another ARST,
where 'R contains the same relations as R except the
relations on 31 AA × and on 13 AA × , which are defined
by

)},(),,{(2111
'
13 zxzxR = and)},(),,{(1211

'
31 xzxzR = .

Now we define the notion of the degree of the data
structure.

Let C be a subset of all possible relations of the form

'TT → , where T and 'T are types. Denote by C the

number of relations in C . Let 'C be a relation
combination such that 'CC ∪ is valid and

}|min{' valid is ii CCCC ∪= . Denote ')min(CC = .

In other words,)min(C is the minimum number of
relations, which is needed to complete C to a valid
relation combination.

Denote by)(CD the set of all relations, which can be
derived uniquely from C . Obviously,)(CDC ⊆ .

The degree of a relation combination C is defined as the
ratio

relations all of number the
)(

)(
CD

CDeg = .

According to the definition 1)(0 ≤≤ CDeg for each
relation combination C .

Let C be the relation combination describing the given
data structure. The data structure is said to be

(i) structured, if 1)(=CDeg ;
(ii) unstructured, if 0)(=CDeg ;
(iii) semistructured, if 1)(0 << CDeg .

Note. Obviously, 1)(=CDeg if and only if C is valid.

Example 2. Consider a special case of an ARST
associated with planar graphs. We have the entities V
(vertices), E (edges) and F (faces). Denote e.g.

VT =1 , ET =2 and FT =3 . By the usual interpretation,
two vertices are adjacent if they are adjacent with respect

to E . Thus we may denote }{
~

11
~

ETT VV == . Similarly,

we may define }{
~

22
~

VTT EE == and }{
~

33
~

ETT FF == .

Moreover, φ== VETT
~

12
~

, }{
~

13
~

ETT VF == and

φ== EFTT
~

23
~

.

In this case we have altogether nine different types of
relations (Figure 4).

V

E

F

Figure 4. Three entities and nine relations

Example 3. It can be shown [5] that, if we know the
relations VF → and EV → , i.e. },{ EVVFC →→= ,
then we can always derive the relations FV → , VE →
and VV → . This means that

},,,,{)(VVVEFVEVVFCD →→→→→= .

So the degree of C is

56.09/5)(==CDeg .

If e.g. },{ FEEVC →→= , it can be shown that

)(CD contains all the nine relations and so

19/9)(==CDeg

and the relation combination C is valid.

If on the other hand },,{ EEVFEVC →→→= , it can
be shown that

}.,,,,,{)(VVFVVEEEVFEVCD →→→→→→=

So the degree of C in this case is

67.09/6)(==CDeg .

www.manaraa.com

4. Determining of the Degree

We first give an algorithm for determining the degree of a
given data structure C , given as a set of relations. We
end the section by proposing the definition for a general
query.

Let entity types nTT ,,1 K , a set

},,2,1{},,2,1{ nnS KK ×⊆ and adjacency defining sets
τ be given. Consider the relation combination

}),(|{ SjiTTC ji ∈→= . By the symmetry, we may
assume that for each pair Sji ∈),(also Sij ∈),(.

Degree Testing Algorithm.

Step 1. Search for each pair Sji ∉),(, such that there
exists an integer jik ,≠ for which Ski ∈),(and

Skj ∈),(. If such pair and integer are found, goto Step
2. Otherwise goto Step 3.

Step 2. Find all integers rkk K,1 , 1≥r such that

Skjki ss ∈),(),,(for rs ≤≤1 . If for at least one s ,

rs ≤≤1 , we have ijk TT
s

~
∈ and },,,{

21

~

rkkkij TTTT K⊆ ,

then include the relations ji TT → and ij TT → in the
relation combination, i.e. add the pairs),(ji and),(ij to
the set S and goto Step 2. If there is no such integer s ,
then goto Step 3.

Step 3. Let 1C be the set of all new relations derived by
Step 2. The degree of the given data structure C is

2n
1)(

CC
CDeg

+
=

and the set of all obtained relations is 'CC ∪ .

The proof of the correctness of the algorithm is omitted
here.

The Degree Testing Algorithm enables the definition of a
general query based on the given data structure, i.e. on the
given relation combination C .

General query: Given ARST),,(τRA , a relation
combination C and an element x of type X , find the set

xY of all elements of type Y such that

(i) the relation)(CDYX ∈→ and
(ii) YXRyx ∈),(for all xYy ∈ .

Note that in (i) the set)(CD of relations can be
determined by the preceding algorithm.

It can be shown that this general definition of a query
includes e.g. all the special queries introduced in [15],
namely the queries such as direct query, inverse query,
self queries, direct transitive query, inverse transitive
query, and indirect transitive queries.

5. Examples

In Lore [3] the structure of the database is presented by a
Data Guide, which is a structural summary of a
semistructured database. It contains all the paths of a data
graph, and there can be more than one data guide of which
one is minimal. A minimal data guide means that it is the
smallest data guide in terms of total number of nodes [16].

A data guide is concise and accurate, i.e. it contains all the
paths of the data graph, and every path in the data guide
occurs only once. However, it is not always obvious that
we need all those relations or paths that are represented in
a data guide. If we consider a data guide in the light of
the theory of the Adjacency Relation Systems, we can
reduce the number of edges between some of the nodes
(or types as they are called in the ARS). It is fully
possible, because the adjacency between the nodes can be
represented with the help of the so-called adjacency
defining types.

For example in Figure 5, the data guide can be reduced by
eliminating the edges between the types Boss and
Regular, because the adjacency is defined with respect to
the type Employee.

Root

Employees

Regular

Boss
Company

company

employee

name phone position
manages

managedby

manages

worksfor

worksfor

worksfor

positionname

name

managedby

phone name

&p1,&p2,&p3,&p4
&p5,&p6,&p7,&p8

&p2,&p3,&p5
&p7,&p8

&p1,&p4,&p6
&c

&r

Figure 5. A data guide of an OEM database [13].

Additionally, we can eliminate the edges between the
types Employee and Company, and between the types
Company and Regular. In the first case the reason is that
the adjacency is defined with respect to the type Root and
in the second case the adjacency is defined transitively
with respect to the path Regular-Employee-Boss-
Company.

www.manaraa.com

We now consider a schema graph (Figure 6) of a
database, which actually is also a data guide. This
schema graph can be further reduced by eliminating an
edge called worksfor, because of the same reason as
before, i.e. the adjacency between the type Emp and
Comp can be defined with respect to the type Root.

As we can see from these two examples the data guides of
Figures 5 and 6 are not minimal from the point of view of
the theory of the adjacency relation systems. This fact
gives new emphasis for the definition of semistructured
data and its degree presented in Section 3.

Root

employee

worksfor

company

manages

managedby
name

name
phone position

Emp
Comp

Figure 6. A schema graph of an OEM database [13].

6. Conclusions

In this paper a new definition of semistructured data
based on the theory of the Adjacency Relation Systems is
introduced. Especially, in this model the degree of
semistructured data is defined accurately. It is also shown
that the degree is a decidable property. Based on this
result the paper contains also a formulation for a general
query. The next step will be the developing of different
kinds of query algorithms based on the model as well as
applying them to frequently occurring applications.

References

[1] S. Abiteboul. Querying Semi-Structured Data.
Proceedings of International Conference on Database
Theory, Delphi, Greece, 1997, 1-18.

[2] P. Buneman. Semistructured Data. Proceedings of the
sixteenth ACM SIGACT-SIGMOD-SIGART Sympiosium
on Principles of Database System, Tucson, Arizona,
1997, 117-121.

 [3] J. McHugh, J., S. Abiteboul, R. Goldman, D. Quass
and J. Widom. Lore: A Database Management System
for Semistructured Data. SIGMOD Record, 26 (3), 1997,
54-66.

[4] P. Buneman, M. Fernandez and D. Suciu. UnQL : A
Query Language and Algebra for Semistructured Data
Based on Structural Recursion. Very Large Data Bases,
VLDB Journal, vol. 9, no. 1, 2000, 76-110.

 [5] M. Wanne. Adjacency Relation Systems. Acta
Wasaensia No. 60. Computer Science 1. Universitas
Wasaensis, Vaasa, 1998.

[6] M. Wanne, and M. Linna. A General Model for
Adjacency. Fundamenta Informaticae, 38, Numbers 1-2,
1999, 39-50.

[7] J. Töyli, M. Linna, and M. Wanne. Modeling
Relational Data by the Adjacency Model. Proceedings of
the Fourth International Conference on Enterprise
Information Systems, Ciudad Real, Spain, 2002, 296-301.

[8] J. Töyli, M. Linna and M. Wanne. Modeling
Semistructured Data by the Adjacency Model.
Proceedings of the Fifth Joint Conference on Knowledge-
Based Software Engineering, Maribor, Slovenia, 2002,
282-290.

[9] R. Goldman and J. Widom. DataGuides: Enabling
Query Formulation and Optimization in Semistructured
Databases. Proceedings of the Twenty-Third International
Conference on Very Large Data Bases, Athens, Greece,
1997, 436-445.

[10] S. Chawathe, H. Garcia-Molina, J. Hammer, K.
Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom.
The TSIMMIS Project: Integration of Heterogeneous
Information Sources. Proceedings of the 100th
Anniversary Meeting of the Information Processing
Society of Japan, Tokyo, Japan, 1994, 7-18.

[11] Y. Papakonstantinou. Query Processing in
Heterogeneous Information Sources. Thesis. Stanford
University, 1997.

[12] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A.
Rajaraman. Indexing Semistructured Data. Technical
Report, the Stanford Database Group, 1998.

[13] S. Abiteboul, P. Buneman & D. Suciu. Data on the
Web from Relations to Semistructured Data and XML
(San Francisco, CA, Morgan Kaufman Publishers, 2000).

[14] P. Buneman, S. Davidson, G. Hillebrand & D. Suciu.
A Query Language and Optimization Techniques for
Unstructured Data. Proceedings of ACM-SIGMOD
International Conference on Management of Data,
Montreal, Canada, 1996, 505-516.

[15] X. Ni, S. Bloor. Performance Evaluation of Boundary
Data Structures. IEEE Computer Graphics and
Applications, 14:6, 1994, 66-77.

[16] R. Goldman. Integrated Query and Search of
Databases, XML, and the Web. Thesis. Stanford
University, Department of Computer Science, 2000.

